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Abstract

Basic concepts of rigid body rolling motion are
applied and extended to the treatment of flexible
rolling devices operating on rigid surfaces under
conditions of slip or skid. A theoretical model is
introduced representing the kinematic performance of
wheel points located at the deformed contact surface.

Knowing the linear and angular velocities at the
wheel axle, governing equations of motion are de-
rived, describing the absolute velocities of points
at the contact surface. An expression is developed
which provides for the 'mean velocity value" at the
contact surface, which permits the derivation of the
"effective rolling radius'" of an elastic device,
applicable to aircraft and automotive tires.

Limited experimental evidence indicates that the

theory represents approximately the motion perfor-
mance of elastic rolling devices, particularly tires.

I. Introduction

From a mechanical point of view, wheel axle dis-
placements and rotations are generally initated and
sustained either as a result of applied torques
(driven wheels) or towing forces (pulled wheels).
These mechanical sources of rolling motion relate to
well known rigid wheel velocity regimes namely: slip,
roll or skid, each one dependent on the direction or
value that the velocity acquires at the point where
the wheel contacts the rigid supporting surface.

When considering elastic rolling devices, parti-
cularly tires, the lack of a compatible velocity
field makes it impossible to define with sufficient
accuracy the velocity regimes of skid, roll or slip,
as it is normally done for rigid wheels. By defi-
nition, a compatible velocity field is one which
satisfies the axle's linear and angular velocities
Vo, w and the kinematic constraints imposed on the
contact surface points of the rolling device.

The objective of this study is to determine a
compatible velocity field and velocity regime corres-
ponding to an elastic rolling device when the axle
velocities Vg, w and its deformed configuration are
prescribed. To this end a general velocity field is
postulated, applicable to elastic rolling devices.
Also, a basic equation is derived, which provides
for the mean value of the velocity at the contact
surface.

Typical tire dynamic problems, where the mean
velocity value is of interest, relate to the poten-
tial development of tire-ground kinematic friction!)
for purposes of traction, braking or during aircraft
landing gear wheel spin-up.

Tire wear and transport efficiency,as dictated by
the effective axle displacement per wheel revolution,
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are also functions of the velocity regime. In this
context, it is of significance to determine the
kinematic conditions under which a deformed tire
will roll with zero slip. This problem is intimately
connected with the definition of the tire effective
rolling radius, Re,o a parameter which allows descrip-
tion of the rolling’ of a(drag force-free) deformed
tire by the motion of an equivalent rigid roller of
radius Re,0, Currently (June 1974), to the writer's
knowledge, there is no theoretical formulation or
experimental data which defines the kinematic pro-
cess undergoing at the contact surface of a tire
when it rolls with zero slip. Here, the equation of
the mean velocity value furnishes, after postulating
a zero mean velocity at the tire contact surface, a
compatible velocity field and an equation of the
effective rolling radius. A semi-empirical expres-
sion in the form R, , = R-A/3 (R = tire radius,

A = tire deflection] based only on tire strains

was derived by Whitbread? Instead, the kinematic
solution developed herein, indicates that, in addi-
tion to the tire deflection parameter, the Re o is
also controlled by the tire contact length; a fact
which may explain the scatter of Rg o meqsurement%a)
due to changes in the tire pregssure or tire types

Results obtained apply only to shallow or circum-
ferentially treaded tires, without considering the
effects from cornering forces or high speeds. The
theory may also be of interest in the study of land-
ing gear drop tests, mechanica} rolling processes
connected with land locomotion '™ and tire hydro-
planing phenomena (%

As presented, Section II summarises aspects and
definitions of the theory of rigid body rolling
motion. These concepts are applied in Sections III
and IV to study the motion of elastic rolling devices
(rollers and tires). First, a kinematic model is
postulated and a velocity field derived, for points
located at the deformed contact surface. Then the
concept of the mean velocity value at the contact
surface is introduced and an equation derived permit-
ting estimation of the effective rolling radii of
elastic rollers and tires. Finally in Section V,
tire rolling experiments and empirical results are
compared with the proposed theory.

1I. The Motion of Rigid Wheels (Rollers)

Basic concepts of rigid body rolling motion are
summarized to be applied later in the study of
elastic rolling devices.

Consider a rigid wheel of radius R, rolling with
uniform linear velocity Vg and angular velocity w.

If Vg and w are known, the absolute velocity of the
wheel axle may be expressed in the form

Vo = wR(1+s) = wRg €9)]
where

R; = R(1l+s) (2)



b) Rolling (s=o, V¢=0)

c) Slip (s<o, V(<0 ).

Figure 1. Typical Rolling Regimes of Rigid Rollers
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Equation (2) indicates the distance between the

center of instantaneous rotation, point I, and the

wheel axle, Figure 1.

Given the set of values V; and w, the non-dimen-

sional parameter s is determined from Eq. (1)
Yo
S = =% - 1; (-1.0gs5%) (3)

The parameter s (3) defines the position of the
center of instantaneous rotation with reference to
the supporting surface. The sign of s resulting
from (3) permits to define the nature of the overall
rolling regime. Thus, the wheel either skids, rolls
or slips in accordance with s 3 o respectively as
shown in Figure 1. Correspondingly if the direction
of the velocity V. at point C, is the same as Vj
then, the wheel skids. Otherwise, it slips. If V=0
it rolls with zero slip.

The above concepts will next be extended to study
the kinematics of elastic rollers and tires. The
object being, to define the equivalent regimes
and velocity characteristics shown in Figure 1 but,
applicable to elastic rolling devices.

III. Motion of Elastic Rolling Devices

A Kinematic Model of Rolling Motion

The concepts of rigid body rolling motion, laid
down in Section II, are concerned with characteris-
tic velocities of skid, roll or slip taking place at
a single point, where the roller contacts the sur-
face. If the rolling device deforms elastically,
then the kinematic description of the velocity
characteristics at the deformed contact surface,is
quite complex. In order to study this problem it
may be postulated that the deformed roller has two
basic regions of motion. One region corresponds to
points which lie outside the contact surface and the
other, to points lying within the deformed contact
surface. The motion of points within each of these
two regions may first be described independently
using basic kinematic concepts. Once this is accom-
plished, it is then required to establish the kine-
matic connection between points located within these
two zones.

For simplicity, consider the two dimensional pro-
blem of an axially loaded elastic cylinder of radius
R, rolling on a rigid surface with uniform linear
and angular velocities Vg and w, respectively.

The deformed roller configuration is prescribed
in terms of the axle height H and footprint contact
length 2L ,assumed to be symmetric with reference to
the local vertical through the axle O (Figure 2).

Theoretical and Actual Deformed
Roller Configurations.

Figure 2.

In general, as a consequence of the mechanical
properties of the roller and the mobilized friction
stresses at the contact surface interface, the
actual footprint length differs from the correspond-
ing theoretically segmented cylinder. This diffe-
rence is accounted for by means of a contact length
parameter k, such as

2L = 2H tan6y = 2k H tané,
~ 4)
k = tan8,/tanf,
Where 5; and 6, are the actual and theoretical

angles corresponding to the footprint trailing and
leading edges, points A, B and A', B', respectively,
(For aircraft tires the parameter k is commonly
known 3, k = 0.85).

Once the roller deformed configuration is given
as stated above, it is considered that the localized
strains do not influence the motion of the contact
zone as a whole. Points within this zone are con-
strained to move along the supporting surface ex-
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clusively and their motion may be described with the
aid of a kinematic model shown in Figure 3.

TITI7TT

Figure 3. Kinematic Model of Generic Point P

A generic point P, pertaining to the contact sur-
face, is assumed to be represented by a pin constra-
ined to slide along a slot parallel to the surface,
while it rotates with angular velocity w around the
axle 0. Adopt the moving polar coordinate system
(r,8), with origin at 0. The position of P is de-
fined by the angle 6 and the radial vector

R cos8
0

r=0P = ¢ (53

cosb

The limiting positions of P relate to the angular
openings (teo) and correspond to the trailing and

leading edges of the footprint respectively. The

Figure 4. Velocities Relative to Axle 0(55 +n/h)

The absolute velocity of P referred to a
fixed (ground) coordinate system XY, obtains from the
superposition of the known axle velocity Vi, (positive)

and Vp/g, Equation (8); that
coseo "l
VP = VO + VP/O = VO - wR —2— 2 (eseo] (9)
cos 6

The negative sign of Vpso is adopted in connection
with V5 defined as positive.

Equation (9) describes a compatible velocity field
corresponding to points at the contact surface of the
roller ., Itindicates that, the contact surface may be
subjected to typical velocity fields such as skid,
slip, or mixed skid-slip modes, as shown in Figure 5.

sign of 8 is adopted positive if it has the same sign

as w., Based on (5), the radial velocity component
along OP is described by

cosb
dr oral de
VI‘ = E = R 5 siné dc (6)
cos ©
The trans-

where V.. is directed outward, along OP.
versal velocity component is perpendicular to OP and
oriented in accordance with the rotation u

do cosé

=I‘Tt-_

de

A = ©)

cosb

From (6) and (7), it is easily seen that V,./ve

tan6, satisfies the motion constraint that the roller

contact point P displaces along the surface support.
The relative velocity of P with respect to O is
determined with (6) and (7), and w = d6/dt

c0s6

9 2.5
Vpso = (VD + V@)~ = wR (8)

cos 6

Equation (8) defines a function symmetric with
respect to © O and continuous for all values of
|e|<8,. The points where 6 =8
ing edges), are subjected to velocity jumps, as
strained material enters into and leaves the con-
tact surface.

Equation (8) for 6, = *mn/6, is shown in Figure 4.

(trailing and lead-

O
Vo (Typ.)
0
A P iC Vp B
T T R
/ i
M_‘ == e ——J—\P/O
a) Skid Velocities
| c . -!B Vo
Pyl e e
s S -
5k14= P Slip 483i#
b) Mixed Skid-Slip Velocties
R SR s
i P/0 |
Vo

A typical velocity field deduced from

Slip Velocities.

c)

Figure 5. Typical Footprint Velocity Characteristics
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The highest skid velocities develop at the con-
tact points B and A, leading and trailing edges, re-
Spectively, Figure 5.a). The highest slip velocity
occur at 8 = O, point C, Figure 5.c¢)

The above skid and slip velocity fields represent

similar velocity directions to the corresponding velo-

cities of rigid rollers, shown in Figures 1.a) and
1l.c respectively. With regard to the mixed skid-slip
velocity field (Figure 5.b), both types of velocity
characteristics coexist. Skidding velocities take
place at the fore and aft footprint zones(N-B ) and
(A-M) respectively, accompanied by a central zone
(M-N} subjected to slipping velocities. The limit-
ing conditions for the existance of a mixed velocity
field are stated in Section IV.

Within the context of velocity regimes, there
still remains the problem of specifically defining
the kinematic conditions under which an elastic rol-
ling device will operate with zero slip; the equiva-
lent of the rigid roller regime, shown in Figure 1.b.
This velocity regime marks the transition between
skidding and slipping and represents a basic refer-
ence condition. To define this regime, it will prove
useful to introduce the concept of the mean velocity
value at the contact surface of an elastic rolling
device.

The Concept of the Mean Velocity Value

In the following it is postulated that the velo-
city of the contact surface as a whole be represented
by the mean value of the local absolute velocities
Vp, Equation (9)*. Since VO is constant the value
of the mean velocity resultant may also be set in the
following form,

V = (mean Vp) = Vg + Vb/o (10)
where Vp o represents the mean value of the velocity
field Vp,g, Equation (8). To determine Vb/o relate
an elemental contact length dx with its corresponding
Vp/o ) (Figure 6).

Figure 6. Elastic Roller Footprint Parameters

‘Thus ,
b SR I

[

Vpio = 5T (11)

X =0

* This hypothesis will be tested on the bases of tire
effective rolling radius measurements (Section V).

Where L = kRsin 6,, and from Figure 6,

R Rcos 6,
cosze

After setting the integration limits & = 6, for

x =L, and 8 = 0 for x = 0, (11) reduces to
6=6
mchosze 4
V 3 0 de =
P/0~ kRsin 6 4
o} cos 8
8=0

2
= - wR cose0 (1+ E-—tan26 )

3 3 (12)

The negative sign of Vé/o results from V, defined
as positive.

Consequently, substituting (12) into (10) yields
a general equation for the mean value of the absolute
velocities at the contact surface of an elastic
roller,

3 K? 2
V = Vp-uRcosd (l+=— tan”e ) (13)

Effective Rolling Radius of Elastic Rollers

By analogy with the motion of rigid wheels
(section II), if the axle velocities V,, w and the
deformed configuration of the rolling device are
given, the corresponding axle velocity may be ex-
pressed in the form,

V.. =

0 wR

; (14)

mR(coseo + 5) =

where s represents a non-dimensional parameter, which
defines the position of the center of instanteous ro-
tation with respect to the surface support as shown
in figure 1 and

R. =

I (15)

R(cosb, + s)

is the distance of the center of instantaneous ro-
tation I from the wheel axle 0.

Substituting (14) into (13) yields

V = uR(s -3 k’sing tans ) (16)

As an application of Equation (16), it is of in-
terest to determine the condition under which an
elastic cylinder rolls with a ''zero mean slip" velo-
city resultant at the contant surface. To postulate
that there exists a zero mean slip velocity resultant
means that certain points at the deformed contact
surface may be subjected to local differential
velocities, but the mean value of the resultant
velocity V=0. This condition is satisfied by
Equation (16), when the parameter

SFr="i8

l-kzsine tané > 0
(o) o

e T (see Table 1)

(17)
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Substituting Equation (17) into Equation (15) yields
the effective rolling radius for a zero mean slip
velocity condition,

2
RI = Re’0 = R coseo(l + 3 tan eo) (18)
or, in non-dimensional form,
R hel -y (19)
e,o0/R 3 *h 1

where the deformation parameter k was defined by (4)
with h=H/R=cose0 and 2/h = k taneo, the axle height

and contact length parameters respectively (Figure 2)
Values of S Equation (17) and of R, 0/R(Equation

(19)) are shown in Table 1 as functions of k and 6 .
There are also shown for convenience, the axle
height H/R and deflection A/2R parameters. Results
indicate that rolling with zero mean slip takes
place with an R_ /R > h, For the same rol-
ler axle height;’ Reff/R increases with increasing
contact length. Specifically R, o/R relates to both
parameters h and £. ’

Equation (17)serves also to establish the roll-

ing velocity regimes of elastic rollers, (see Sec-
tion IV, Equation 30).

IV. The Rolling Motion of Tires

Mean Footprint Tire Velocity

Consider a smooth or circumferentially treaded
tire of toroidal cross section with an equatorial
radius R.. The axle is subjected to the same roll-
ing velocity conditions as defined for the elastic
roller in connection with Equation (9).

The mean skid velocity at the tire contact sur-
face is now estimated applying similar concepts as
formulated for the elastic roller, Equation (10);

the only difference being that the shape of the tire
, Figure 7.

imprint approximates an ellipse 2

Figure 7 - Tire Footprint Parameters

The mean value Vb/o of the tire contact surface

velocity, relative to the axle O, for a given ellip-
tical footprint area A, is defined by

dA (20)

> =

P/0
L

Where V defined by Equation (8), applies to an

P/0

elemental area dA = dxdy within the tire imprint
region. The elemental contact length dx, corresponds
to a generic circumference "i'" at a distance y from
the tire equatorial (mean) plane( Figure 7,)is
defined by :

R cose0
T, de (21)
cos 6

dx =

Substituting (8) and (21) into (20), yields,

4wR2c0526 v R
V = o d)’ de
P/0 A 4
cos 6
y=0 8=0

The integration limits in (22), are deduced no-
ting that, 8 = ei represents the central angle of

(22)

the half contact length Li corresponding to the ciu-

cumference "i",Figure 7. Points on the periphery
of the ellipse with major and minor semi-axes L and
b, are defined by

@,/ + o = 1

from which the integration limit (22) reduces to

2 2%
-y")

i (23)

L
L. =
3] -1.7i, -1( b
% = tan (ﬁﬂ = tan (

Integrating (22) and substituting for the corres-
ponding 1limits (23), noting that the ellipse area
A = nLb; the mean value of the slip velocity, re-
lative to the axle 0, reduces to

b k2. .2

VP/O = -wR cos eo(1+z—-tan 60) (24)

where the negative sign of (24) results from V
defined as positive. Substituting (24)into

(10), yields a general equation for the mean value
of the absolute velocities at the contact surface
of a tire,

- gl 4

V = V,-wRcos (1+ 7— tan"6 ) (25)
Substituting (15) into Equation (25) yields

- 2

V = wR(s - z— sine_tan ) (26)

A comparison of Equation (16) and (26), shows the
close analogy between the rolling motion of elastic
cylinders and tires in terms of the mean value that
the absolute velocities acquire at their respective
contact surfaces.
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Effective Rolling Radius of Tires

As an application of Equation (26) it is of in-
terest to determine the conditions under which a tire
will roll with a "zero mean slip" velocity resultant
at the contact surface. FromEquation (26) setting
V=0,

sinf tanf >0 (27)
0 0

A result which indicates that a tire rolls with
zero mean slip when its center of instantaneous ro-
tation is located at a distance S; = Rsg, below the
surface support.

Equation (27) serves also to establish the tire
rolling velocity regime by using Equation (30)

With the help of Equation (27) it, is now possible
to deduce the corresponding tire effective rolling
radius RI = Re at a zero mean slip. From Equation

(16) and (25),

>

2
2
Re,o =R coseo(1+ Z—-tan 90) (28)
or in non-dimensional form
PR
Re,o /R =h + Z—(EJ = F (h,%) (29)

where k,h and % have been defined in connection with
(4) and (19).

Values of s (Eq.27) and R, ,/R (Eq.29) are given in
Table 1 and conveniently shown, either as functions
of eo , H/R or A/2R. Always R, e/R > h.

For the same axle height, the tire inflation pres-
sure will influence the R, , to the extent that it
affects the contact length’parameter &. The Re o i
related to both h and &, this fact may explain why
tire measurements of Re 0 appear to produce an ap-
parent scatter, when results are evaluated on the
bases of tire deflections only. This aspect will be
considered in the next Section. A comparison of
Equations(19) and (29) shows the close analogy be-
tween the motion of elastic rollers and tires in
terms of their effective rolling radii.

e

a) Skid (s»o, V > 0)

& Figure 8.

b) Rolling (s = s

Typical Velocity Regimes of Elastic Rolling Devices.

Mean Velocity Regimes

Having defined the mean zero slip velocity, it is
now possible to specifically determine the operating
mean velocity regimes of elastic rolling devices, in-
cluding tires. In effect, given the axle velocities
Vo, w and deformation parameters (4); from Equation
("14) , the position of the center of instantaneous
rotation is related to

0
§ = — . -c0S6

wR o] (30

Now, in complete analogy to the motion of rigid
rollers (Figure 1), comparing s from equation (30)
with s, from Equations (17) or (27), there results:
if s > s, , the contact surface is subjected to a
mean skid velocity; if s < o there is a mean slip
velocity and if s = s rolling takes place with zero
mean slip.

Limiting conditions for the existance of a mixed
velocity field of the type shown in Figure 5b, are
defined by (9), when Vp = 0, and occur
for an operating range of Vy/wR values, such that

&)
R

coseO oR

< 1/coseo

The mean absolute velocity value at the contact
surface of elastic rollers and tires were given by
(13)and (25) respectively. Both equations may also
be set in the form,

L A
where
¥ 2
Rg = R cosg (1+ —— tan"6) = Re /o (31)

Equation (31) represents the equivalent rolling
radius of the device with n = 3, for elastic rollers
and n = 4, for tires.

In summary, the motion of an elastic rolling de-
vice can also be studied on the bases of the motion
of an ideal rigid roller of radius Re given by
Equation (31) and corresponding velocity characteris-
tics V given by Equations (16) or (26). The mean
velocity V applies at a vertical distance R,, below

e’
the axle, as shown in Figure 8.

Y V< 0)

(Tires)

o 0) ¢) Slip (s« S0
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TABLE 1 3 EFFECTIVE ROLLING RADIUS PARAMETER (Rg,o/R)

- ELASTIC ROLLERS AND TIRES -

TETAZ H/R DELTA/2R SZERO Re,o/R
(RAD) ROLLERS TIRES ROLLERS TIRES
EMPIRTCAL | TREORETICAL
Eq. (17) Eq. (27)
.00 | 1.0000 .0000 .0000 0000 1.0000 1.0000 | 1.0000
.10 9950 0025 L0024 .0018 99T #9983 9968
20 9801 .0100 .0097 L0073 +9898 9934 9873
«30 «9553 <0223 0220 0165 9774 29851 9718
40 | L9211 0395 0397 .0297 $9607 9737 9508
K= .85 50 8776 L0612 0631 L0473 29407 49592 9249
.60 | 8253 0873 0930 0698 29184 L9418 8951
.70 L7648 L1176 L1307 0980 .8955 9216 8629
80 | <6967 .1516 1779 L1334 8746 .8989 .8301
90 .6216 1892 2377 1783 8593 8739 +7999
.00 | 1.0000 0000 0000 .0000 1.0000 1,0000 1.0000
.10 49950 .0025 .0027 .0020 9977 .9983 .9970
20 | .9801 ,0100 .0109 0082 9909 .9934 9882
30 9553 0223 0247 .0185 9800 9851 9738
40 9211 +0395 L0445 ,0333 9655 9737 9544
K= «90 .50 8776 0612 L0707 .0530 9483 9592 9306
.60 .8253 L0873 .1043 .0782 .9296 L9418 .9036
.70 7648 .1176 1465 +1099 29113 9216 BT4T
B0 | 6967 .1516 +1994 +1496 8961 .8989 BUE
90 6216 .1892 2665 .1999 .8881 8739 8215
4] — A1
00 11,0000 +0000 +0000 +0000 1,0000 | 1.0000 | 1,0000
0 | 9950 «0025 «0033 #0025 9983 .9983 9975
20 +9801 +0100 0134 .0101 .9935 .9934 .9901
$30 1 49553 .0223 +0305 0229 9858 9851 9782
) 29211 .0395 L0549 0412 9759 937 29622
K=1.00 50 8776 0612 .0873 0655 +9649 9592 9431
+60 8253 | L0873 .1288 0966 9541 9418 .9219
<70 | L7648 1176 +1809 J1357 9457 9216 .9005
80 | 6967 <1516 2462 1847 9429 .8989 8814
AT SRR s lpee 3290 | L2468 9506 | 8739 | 8684

V. Tire Rolling Measurements

It is of interest to verify if the postulated ve-
locity field, Equation (8), and the concept of the
mean value of the velocity at the tire contact sur-
face, Eq. (26), are representative of expected tire
Tolling performance.

Since the tire effective rolling radius Re o,
Eq. (28), was derived on the bases of the afore men-
tioned kinematic conditions, rolling test measure-
nents of Re 0 will next be used to verify the theory.

Measurements of Re o for various types of aircraft
tires and correspondlng footprint-length are given
in Reference 3. Three sets of aircraft tires are
selected for analysis as shown in Table 2, where the
results of rolling test measurements of Re o are
presented in terms of the deflection A/2R and foot-
print length k (Eq. 4) parameters. Corresponding
values of k have been scaled from Fig. 3 of Ref. 3
as applicable to the tires under consideration.

It is noted that the parameter k is not a constant
and on the average it approximates the value k=0.85,
being a function of the type of tire, loading condi-
tions and mobilized friction at the contact surface
interface.
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Table 2 - Effective Rolling Radius_(Re’o/R)

Tireg] Test Empi -
(3) : Theory
Type |A/2R | k |Ref. 31;3%) i T

eA' Eq. (19) |Eq.(29)

1R
40 x | .053 |.834 | .940 965 | .946 .931
* |.o74 |.825 | .921 050 | .924 .906
130 | .836 | .897 913 | .883 .868
26 x | .073 |.896 | .948 951 | .939 .918
** | 082 |.900 | .949 945 | .933 .910
.089 | .900 | .942 941 | .928 ,902
| .135 |.840 | .917 910 | .882 .844
57 x | .063 |.858 | .958 958 | .940 .922

el

* %

+

40 x 12

- 14PR - VII - R24-B
26 x 6.6 -12PR - VII - R23-B

57 x 20 - 16Ply- I(56-inch)-R54.




The measurements of Re o are contrasted with the
semi- empirical equation and the theoretical re-
sults for elastic rollers and tires. This limited
analysis indicates that the elastic roller Eq. (19)
approximates better the Re o measurements than the
tire Eq. (29). F

This fact may be explained on the bases that
Rg o/R, (Eq. 29) relates to k2 scaled from a graph
of’L/R vs A/2R (3) and also because Equation (29).

was derived neglecting the influence of tire strains.

Further measurements of Re,o(3) for similar tire
types and varying inflation pressures P, indicate
that, for the same tire deflection parameter A/2R,
the Re, o increases with increasing p. This would be
confirmed by Equations (19) and (29) only if in
order to maintain the same tire deflection A an in-
crease of axle load becomes associated with a larger
footprint length. Obviously the influence of tire
pressure and footpring length on the effective rol-
ling radius cannot be explained by the semi-emprical
expression of Re o since the latter only depends on
the deflection A.

In general,the values and trends of Re o Eq. (19),
defined for an elastic roller, are considered to be
also applicable to tires, Finally,the rather close
approximation obtained for Re,o appears to indi-
cate that the velocity field, defined by Eq.(8) is
representative of expected tire motion performance.

Conclusions

An admissible velocity field corresponding to
points at the contact surface of rolling elastic de-
vices, was postulated. Its application to elastic
rollers and tires, indicates that the contact area
may be subjected to either one of the following
velocity fields: skid, slip and mixed skid-slip
modes. These velocity fields may be estimated in
detail if the axle velocities and deformed configu-
ration of the device are prescribed.

The kinematic model adopted indicates that maxi-
mum skid velocities occur at the leading and trail-
ing edges of the contact surface. Instead, maximum
slip velocities take place at the center of the con-
tact area.

The operating range of axle velocities Vgy/wR for
the existance of a mixed skid-slip velocity field has
also been defined.

The mean value of the velocity at the contact sur-
face permits to define the wheel operating regime. In
particular a zero mean slip velocity condition is in-
troduced, applicable to elastic rolling bodies, par-
ticularly tires. This development permits to cal-
culate the effective rolling radius Re,o correspond-
ing to a (drag force-free) tire, confirming the fact
that, Re,o is larger than the axle height. It fur-
ther indicates that, in addition to the tire deflec-
tion parameter the Re,o is also controlled by the
tire contact length, which may explain the in-
fluence of tire pressure on the value of the effec-
tive rolling radius.

A comparison of the theory with limited test mea -
surements, indicates that the elastic roller equa-
tion represents a close approximation to the kinema-
tic performance of a tire. Results apply to smooth
,or circumferentially treaded tires.
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Nomenclature

A Footprint area

b Width of footprint

H Axle height

h=H/R Axle height parameter

k Contact length parameter

L Footprint half-length

2=L/R Contact length parameter(footprint).

R Radius of a rigid or elastic roller.
Radius of tire equator.
Ry Distance of center of instataneous rota-

tion to wheel axle.

Ry Equivalent radius of an elastic roller or
tire

Re 0 Effective rolling radius at zero slip

T Radial distance

s = §/R Parameter of center of instanteneous ro-
tation

VO,V Linear and Mean Velocities.

w Wheel angular velocity, radians/sec

6 Angle, wheel rotation

A Vertical deflection

§ = A/2R Deflection parameter.
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